
Proceedings: Building Simulation 2007

- 1346 -

SIMULATION OF ENERGY MANAGEMENT SYSTEMS IN ENERGYPLUS1

Peter G. Ellis1, Paul A. Torcellini1, and Drury B. Crawley2

1National Renewable Energy Laboratory, Golden, CO, USA
2United States Department of Energy, Washington, DC, USA

1 This manuscript has been authored by Midwest Research Institute under Contract No. DE-AC36-99GO10337 with the U.S. Department of

Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes.

ABSTRACT

An energy management system (EMS) is a dedicated
computer that can be programmed to control all of a
building’s energy-related systems, including heating,
cooling, ventilation, hot water, interior lighting,
exterior lighting, on-site power generation, and
mechanized systems for shading devices, window
actuators, and double facade elements. Recently a
new module for simulating an EMS was added to the
EnergyPlus whole-building energy simulation
program. An essential part of the EMS module is the
EnergyPlus Runtime Language (ERL), which is a
simple programming language that is used to specify
the EMS control algorithms. The new EMS controls
and the flexibility of ERL allow EnergyPlus to
simulate many novel control strategies that are not
possible with the previous generation of building
energy simulation programs. This paper surveys the
standard controls in EnergyPlus, presents the new
EMS features, describes the implementation of the
module, and explores some of the possible
applications for the new EMS capabilities in
EnergyPlus.

KEYWORDS
whole-building simulation, EnergyPlus, controls,
energy management system

INTRODUCTION
For the past 30 years most building energy simulation
programs have shared a similar architecture: an input
file describes the building form, fabric, and heating,
ventilation, and air-conditioning (HVAC) systems;
weather data and user schedules apply external and
internal environmental forces that drive the
simulation forward in time; control algorithms
respond to changing conditions to meet operational
requirements; and ultimately, the simulation program
predicts the building performance.

Historically, control algorithms in building energy
simulation programs have been designed to model
typical operational strategies. Examples are
thermostatic control, flow control, daily and seasonal
schedules, outdoor temperature reset, economizer

control, equipment load staging, and daylighting
control. Most simulation input for components has
predefined control sequences with only schedules
and set points accessible to the user. Interactions
between components are limited and are usually
hard-coded in the simulation program.

With the advent of the energy management system
(EMS), today’s control algorithms quickly transcend
the typical operational strategies that are found in
most simulation programs.

An EMS is a dedicated computer that can be
programmed to control all of a building’s energy-
related systems, including heating, cooling,
ventilation, hot water, interior lighting, exterior
lighting, on-site power generation, and mechanized
systems for shading devices, window actuators, and
double facade elements. The close cousins of the
EMS, building management systems (BMS) and
building automation systems (BAS), can serve the
same energy functions as an EMS, but also control
nonenergy systems such as for building security and
life safety.

An EMS works by polling a set of sensors that
retrieve data about external environmental conditions,
internal building conditions, HVAC system
conditions, and other equipment conditions. The
sensor data become input variables for the EMS
control algorithms. These algorithms are specified
by using a simple programming language based on
IF-THEN-ELSE statements and other logic structures
(or the equivalent, if the EMS is equipped with a
graphical user interface). After the EMS passes
judgment, remote actuators make changes to the
system operation; for example, they turn equipment
on or off, change thermostat set points, and open and
close valves and dampers.

In 1999, 10% of commercial buildings had an EMS.
This represents about one-third of commercial
building floor area (Brambly et al. 2005). An EMS is
often recognized as a way to implement energy-
saving control strategies and improve overall
building energy performance. Average annual
energy savings from an EMS are estimated at 5%-
15% (Brambly et al. 2005). One common energy

Proceedings: Building Simulation 2007

- 1347 -

cost saving application for an EMS is for demand
management and load shedding.

As the demand for low-energy buildings increases,
building energy simulation programs must evolve to
meet the needs of design engineers. Recently a new
module for simulating an EMS was added to the
EnergyPlus whole-building energy simulation
program (Crawley et al. 2004). An essential part of
the EMS module is the EnergyPlus Runtime
Language (ERL), which is a simplified programming
language that is used to define the EMS control
algorithms.

This paper surveys the standard controls in
EnergyPlus, presents the new EMS features,
describes the implementation of the module, and
explores some of the possible applications for the
new EMS capabilities in EnergyPlus.

STANDARD CONTROLS
Examining the inventory of standard controls in
EnergyPlus is useful as background for
understanding the new EMS controls. The standard
controls include both low-level and high-level
controls. The most complex controls in EnergyPlus
are for HVAC systems.

HVAC systems are defined as a set of discrete
components connected by a network of nodes. This
approach offers great flexibility for connecting many
system configurations.

Low-level controls

Low-level controls are meant to simulate certain
closed-loop hardware controls that have a very
specific job to perform. Low-level controls are often
embedded in the input for an EnergyPlus object.

All EnergyPlus input data are specified by using
objects. Each object is described in the text-based
input file with an object name followed by a list of
fields, delimited by commas and terminated with a
semicolon. For example, the ELECTRIC
EQUIPMENT object:

ELECTRIC EQUIPMENT,
 Zone 1 Equipment, ! Name
 Zone 1, ! Zone Name
 Office Schedule, ! Schedule Name
 700, ! Design Level {W}
 0, ! Fraction Latent
 0.3, ! Fraction Radiant
 0; ! Fraction Lost

Figure 1 An EnergyPlus input object

Note that exclamation marks are used to delineate
user comments which are ignored by the program.

The ELECTRIC EQUIPMENT object, for instance,
has a low-level embedded control in the form of a
schedule that is supplied by the user. The schedule is

used to set the power level of the equipment
throughout the simulation.

Many HVAC component objects also have embedded
local control. Water heater objects, for instance,
have a set point temperature schedule and deadband
that controls how the heating element operates.
Other examples are the variable air volume terminal
unit objects, heat pump unitary system objects, and
hydronic radiant system objects. Sometimes the
embedded controls require many input fields and can
be quite complex.

Several EnergyPlus objects only control other objects.
These low-level objects provide some of the
fundamental system control capabilities in
EnergyPlus. Examples include the ZONE
CONTROL:THERMOSTATIC object, which
provides basic thermostatic control for zone heating
and cooling, and the CONTROLLER:SIMPLE object,
which is used to adjust water flow through a coil to
achieve a target outlet air temperature. These
control objects are considered low-level because they
have a very specific job to perform with specific
hardware. Unlike embedded controls, these system
controls are external to the controlled object.

High-level controls

High-level or supervisory controls control the
operation of large parts of the system. High-level
controls can also jump across system boundaries to
coordinate operation of the plant system and the air
system.

The standard high-level HVAC system controls are
typically expressed with dedicated input objects that
manage and control the operation of other component
objects or portions of the entire system “loop.” The
major types of high-level controls are:

• SET POINT MANAGERs

• SYSTEM AVAILABILITY MANAGERs

• PLANT OPERATION SCHEMEs

• DEMAND MANAGERs

Figure 2 shows a complete inventory of high-level
EnergyPlus control objects.

SET POINT MANAGER objects can access data
from any node in the HVAC system and use this
information to calculate a set point temperature for
another node in the system. The SET POINT
MANAGER object is used in conjunction with a
CONTROLLER:SIMPLE object.

SYSTEM AVAILABILITY MANAGER objects can
also access data from any node in the HVAC system.
These managers use the data to decide whether to
turn an entire system loop on or off. The SYSTEM
AVAILABILITY MANAGER:NIGHT CYCLE
object, for example, can monitor zone temperatures

Proceedings: Building Simulation 2007

- 1348 -

and cycle the air system to turn on if conditions
become too hot or too cold.

PLANT OPERATION SCHEME objects are used to
stage the plant equipment by priority according to the
heating or cooling load. These objects have access to
the plant loop load data and can set the availability of
plant components such as chillers, boilers, and
cooling towers.

DEMAND MANAGER objects are yet another type
of high-level control. These are used for demand
management applications that attempt to keep the
total building electricity demand below a certain limit.
This is accomplished by shutting off or reducing
power to nonessential loads to reduce the overall
demand.

All high-level control objects are simulated once per
system time step. Control decisions are made based
on conditions in the previous time step, i.e., lagged
control. DEMAND MANAGERs, however, are the
exception. Although the duration of the time step
can be as short as 10 minutes, the demand limit might
be exceeded within a single time step. Lagged
control cannot reduce the load in time. Real demand
management systems can react much more quickly to
demand spikes. For this reason the DEMAND
MANAGER objects in EnergyPlus use instantaneous
instead of lagged control. The EMS module uses a
similar type of instantaneous control and is described
in more detail below.

The standard controls can accommodate a wide range
of system control configurations and are useful for
many common applications. Yet they do have some
weaknesses. Although the controls in EnergyPlus
are more flexible than those of its predecessors,
BLAST and DOE-2, the control options are still
rather rigid. The EnergyPlus developers cannot think
of every possible control strategy. Each distinctly
new control strategy requires new code development.
Another weakness is that the standard control objects
can be difficult to learn and use. Each object has a
unique list of input fields.

All standard control objects are described in detail in
the EnergyPlus Input Output Reference and the
EnergyPlus Engineering Reference (UIUC, LBNL
2007a, 2007b).

EMS CONTROLS
In the hierarchy of EnergyPlus controls, the EMS
module is a generalized, high-level control for all
building systems. In fact, the EMS can replicate the
functionality of many of the standard high-level
control objects in EnergyPlus. Similar to a SYSTEM
AVAILABILITY MANAGER, the EMS can turn
pumps and fans on and off. Similar to a DEMAND
MANAGER, the EMS can turn lights and electric
equipment on and off and change the set points on

zone thermostats. Similar to a SET POINT
MANAGER, the EMS can change the set points on
system nodes. Similar to a PLANT OPERATION
SCHEME, the EMS can turn supply-side heating,
cooling, and heat rejection equipment such as boilers,
chillers, and cooling towers on and off.

Although the EMS can replicate the functionality of
many high-level control objects in EnergyPlus, it
cannot replace the low-level control objects such as
CONTROLLER:SIMPLE and ZONE
CONTROL:THERMOSTATIC. As is true for a real
EMS, localized, low-level controls are more efficient
for certain dedicated tasks such as proportional-
integral-derivative (PID) control. Instead of
replacing the low-level controls, the EMS can
interact with control objects by changing the set
points that the controllers are attempting to meet.

For high-level control, the standard and EMS
controls can work together to control the same
system. In some cases the standard controls may be
simpler and require less input than the equivalent
EMS controls. In general, the EMS controls will be
used selectively when more flexibility is needed or
when a certain control strategy cannot be modeled
with the standard controls.

The EMS input objects are divided into two
categories: hardware objects and software objects.
The hardware objects describe the physical
components of the EMS such as sensors and
actuators. The software objects describe the logical
components of the EMS such as programs and
subroutines. A list of all new EMS objects is shown
in Figure 3. The hardware and software objects
communicate via user-defined EMS variables and
ERL.

Hardware objects

The EMS hardware objects set up the physical
components of the EMS. The ENERGY
MANAGEMENT SYSTEM:SENSOR and ENERGY
MANAGEMENT SYSTEM:ACTUATOR objects
define the EMS variables that can be accessed by
ERL.

The SENSOR object maps any EnergyPlus report
variables or meters to an EMS variable. Report
variables provide access to the complete set of
exterior environmental conditions, internal zone
conditions, HVAC system conditions, and all other
equipment conditions. Meters provide access to
utility demand and consumption data.

The SENSOR object also provides a mechanism for
programming fixed schedules into the EMS. A
schedule is defined by using any of the standard
EnergyPlus SCHEDULE objects. The value of the
schedule is then mapped to an EMS variable by using
the Schedule Value report variable. When used with

Proceedings: Building Simulation 2007

- 1349 -

the SCHEDULE:FILE:COMMA object, the
SENSOR object allows data to be imported from an
external file and used by the EMS. One application
might be to use real experimental data to test a
proposed EMS algorithm.

The ACTUATOR object maps control variables to an
EMS variable. Control variables are a new feature of
the EMS module that allows control signals to be
sent to an EnergyPlus object. When the EMS
variable corresponding to a control variable is set to a
new value in an ERL program, the EMS signals for
an actuator to turn a component on or off, change a
set point, etc. The set of possible control variables
depends on the object type that is to be controlled.
All available control variables in the simulation are
reported out to a new output file.

Software objects

The EMS software objects are designed to mimic the
programming language used with a real EMS, yet are
constrained to work within the paradigms for
EnergyPlus input objects. The ENERGY
MANAGEMENT SYSTEM:PROGRAM object, the
ENERGY MANAGEMENT SYSTEM:INITIALIZE
object, and the ENERGY MANAGEMENT
SYSTEM:SUBROUTINE object are the containers
for instruction blocks of ERL code. All PROGRAM
objects are automatically run by EnergyPlus at every
system time step. Multiple PROGRAM objects are
allowed and may interact (or interfere) with each
other. The PROGRAM LIST object forces a run
order on the PROGRAMs.

SUBROUTINE objects can be called to run from a
PROGRAM object or another SUBROUTINE object.
The SUBROUTINE object is useful for
encapsulating code that is called in multiple places.
It is also helpful for organizing and structuring code.
When the SUBROUTINE object finishes running,
control is returned to the object that called it.

The ENERGY MANAGEMENT SYSTEM:
GLOBAL VARIABLE object declares a global EMS
variable that can be accessed by all PROGRAM
objects, SUBROUTINE objects, and INITIALIZE
objects. EMS variables declared by SENSOR and
ACTUATOR objects are also very similar to global
variables. A SUBROUTINE can emulate a function
call by using global variables to store inputs and
output values.

The ENERGY MANAGEMENT SYSTEM:
REPORT VARIABLE object creates a custom report
variable that is mapped to any EMS variable,
including variables declared by a SENSOR object,
ACTUATOR object, or GLOBAL VARIABLE
object, or any local variable in any PROGRAM
object, SUBROUTINE object, or INITIALIZE object.
The custom report variable can then be reported to
the output file.

The REPORT VARIABLE object is anticipated to be
essential for debugging EMS algorithms. Besides its
uses for controlling building systems, this object,
combined with ERL, has the potential to provide a
very flexible capability for custom reporting.

EnergyPlus Runtime Language

ERL is the simplified programming language that is
used to define the EMS control algorithms. Every
programming language comprises instructions or
commands that tell the processor what to do. ERL
uses a minimal set of instructions to achieve a wide
range of functionality. A list of the instructions and
their syntaxes is shown in Figure 4. ERL instructions
are parsed and interpreted by EnergyPlus at
simulation runtime.

PROGRAM, SUBROUTINE, and INITIALIZE
objects use fields to store the instructions for ERL.
As with most EnergyPlus objects, each field is
typically given a separate line of text for the sake of
readability. In this case, each field can be thought of
as a separate line of code. Every field, i.e., line of
code, must conform to the following rules:

• Every field contains no more than one
discrete instruction

• Every instruction starts with a keyword:
SET, IF, ENDIF, CALL, etc.

• All field content (keywords, variable names,
etc.) is case insensitive

• A comma (or semicolon) marks the end of
every instruction.

An example of a PROGRAM object with some ERL
code is shown in Figure 5.

Variables are an important part of a programming
language. There are five types of EMS variables:
sensor, actuator, global, local, and built-in variables.
All types are treated the same way by ERL and can
be used interchangeably with any instruction.

All numeric variables are treated as floating point
numbers. String variables will be introduced in a
future release. We anticipate that this will also
require other string handling instructions to be added
to ERL.

A set of built-in variables provides date and time
information that is not available via standard report
variables, including: Year, Month, Day, Hour,
Minute, Second, DayOfYear, DayOfWeek, and
Julian. Predefined constant variables—True, False,
On, and Off—are also available.

The counterpart of the sensor variable is the actuator
variable. Sensor variables are used to get the state of
building systems; actuator variables are used to set
the state of building systems. When used with

Proceedings: Building Simulation 2007

- 1350 -

actuator variables, the SET instruction performs
control actions on the object to which it maps.

The rules for EMS variables are summarized as
follows:

• No spaces are allowed in variable names

• Underscore _ is the only special character
allowed in variable names

• Variable names are not case sensitive

• All numeric variables are treated as floating
point numbers

• Sensor variables and built-in variables can
be reassigned by using SET

• Actuator variables perform control actions
by using SET.

All variables are dynamically typed. A variable can
be of type Null, Number, String, or Array. Variable
type is assigned during the SET instruction.

Expressions are key building blocks for ERL code.
An expression is a sequence of variables or constants,
or both, linked together by operators. An expression
can always be evaluated and reduced to a single
value. An expression is always the last element of a
SET, IF, or ELSEIF instruction. Therefore, they can
be used interchangeably for SET instructions and
IF/ELSEIF instructions. That means both of the
following instructions are allowed:
 SET a = c < d

 IF a - 1

In the case of the SET example, the value of a is set
to 1 if c is less than d, otherwise it is set to 0. For
the IF example, the IF block of instructions are
executed if a - 1 is greater than zero.

Compound expressions allow multiple operators to
be sequenced or nested. For example:
 a + b * 7 / 4.5

 (a * 3 + 4) ^ 2

 (a > b) && (c < d)

The rules for expressions are:

• An expression is a sequence of variables or
constants, or both, linked by operators

• Expressions always evaluate to a single
value

• Comparison operators evaluate to 1 for true
or 0 for false.

IMPLEMENTATION
The EMS module is implemented with four major
code components:

• EMS Manager

• Language Parser

• Runtime Interpreter

• Expression Evaluator

The core of the EMS module is the EMS Manager,
which coordinates the activities of the EMS objects
with the overall EnergyPlus simulation. SENSOR
objects and ACTUATOR objects provide
communication between the EMS Manager and the
building systems.

Sensors were not difficult to implement, as they take
advantage of the existing EnergyPlus report variables
and meters. Pointers are used to remotely access the
values of report variables in other parts of the
program.

Actuators required significantly more effort to
implement because there were previously no control
variables for any EnergyPlus objects. A generic
control variable interface for all objects was
developed that can accept control messages from the
EMS Manager. The interface is general enough to
work with HVAC system components, as well as
with non-system components such as electric lighting,
electric equipment, and zone thermostats. Like
sensors, the actuator interface also uses pointers, but
this time it allows the EMS Manager to remotely set
the control variables in other parts of the program.
An initial round of actuator control variables have
been implemented for a small set of EnergyPlus
objects. Widespread implementation is a large task
and will take place over the course of several releases.

The Language Parser is called at the beginning of the
simulation to parse all instruction blocks containing
ERL code. At this time the Parser issues messages
about syntax errors found in the instruction blocks.
Instruction blocks without errors are stored in data
structures as a parsed pseudocode instruction list that
is understood by the Runtime Interpreter.

During the simulation, the EMS Manager is called
after the system time step is complete. At this point,
all report variables and associated sensors contain
updated values. The EMS Manager calls the
Runtime Interpreter and passes the appropriate
instruction list. Any expressions are dynamically
evaluated by the Expression Evaluator by using the
updated variable values for the current system time
step.

Any change to an actuator variable sends a control
signal back to its system component via the control
variable interface. Depending on the type of
component that is being controlled, the EMS
Manager may force all or part of the system time step
to be resimulated. Similar to the way the Demand
Manager works, the EMS Manager can call for
exterior equipment, the zone heat balance, or the

Proceedings: Building Simulation 2007

- 1351 -

HVAC system to be resimulated under the new
conditions. The report variables and sensors are
updated and the simulation continues until
completion. Under most normal control strategies
the need to resimulate is relatively infrequent.
However, a very poorly designed control strategy
could cause the EMS Manager to resimulate nearly
every time step, which would significantly increase
simulation runtime.

APPLICATIONS
The new EMS capabilities have multiple applications
for whole-building simulation. In general, the EMS
module has applications for any advanced control
scenario that requires flexibility beyond the standard
controls. A major advantage of the EMS is that it can
span system boundaries and allow control algorithms
to integrate air system, plant system, and other
objects such as electric lights and equipment. This
type of coupling is not currently possible with the
standard EnergyPlus controls.

One specific application that can require flexibility
and system-spanning control is for demand
management and load shedding. Although the
standard controls do provide the DEMAND
MANAGER objects, the control strategies are limited
to a few fixed options. The EMS controls can
provide additional flexibility.

Because the EMS module uses a simple
programming language to define the control
algorithms, another application is to test real-world
EMS programs in simulation before they are used on
a real building. Simulation, in general, provides a
way to test a design concept before it is constructed.
But for the EMS module there is a parallel here
between input and reality that is rarely observed in
building simulation. For most real-world EMS
programs, whether they are defined by a
programming language or a graphical user interface,
the real-world control logic should be directly
translatable to the ERL syntax.

At the same time that the EMS module offers a new
level of flexibility, it also introduces a new level of
complexity for user input. For this reason the EMS
capabilities should be recognized as an advanced
feature. Many common applications will continue to
be served by the standard EnergyPlus controls, which
are easier to configure and less susceptible to user
error.

FUTURE DEVELOPMENT
Future development will include the widespread
implementation of actuator control variables for more
EnergyPlus objects. One important task is to
implement a set of actuators that operate at the plant
loop or air loop level. HVAC components on a loop
can have dependencies that require the entire loop to

be actuated as a whole. An interesting area for
development is the addition of actuators for windows
and daylighting. Window actuators could be used for
natural ventilation, opening and closing windows,
shades, and blinds, and setting slat positions.
Daylighting actuators could dim electric lights or
close window blinds to reduce solar heat gain or
block glare. In addition to rudimentary actuators for
turning pumps and fans on and off, actuators could
be used to dynamically set the speed of variable-
speed pumps and fans. Besides changing the set
point on a system node, actuators could set the
maximum volumetric flow rate on a node, effectively
simulating a valve that can control flow through the
system.

Work is also planned for extending ERL to include
looping constructs and support for manipulating
arrays and strings.

CONCLUSION
The new EMS module adds advanced control
capabilities to EnergyPlus. The new EMS controls
and the flexibility of ERL allow EnergyPlus to
simulate many novel control strategies that are not
possible with standard EnergyPlus control objects.
The high-level scope of the EMS module allows
control algorithms to span system boundaries and
provide whole-building controls for a true whole-
building simulation. The ability to selectively
resimulate a time step allows the EMS Manager to
make instantaneous control decisions, instead of
having a lag of one time step.

Controls that closely mimic a programmable EMS
are unprecedented for building energy simulation
programs. The EMS controls add a new level of
flexibility for modeling innovative control strategies
that will likely become a critical part of tomorrow’s
low-energy buildings.

ACKNOWLEDGMENT
This work was supported by the Building
Technologies Program within the Office of Energy
Efficiency and Renewable Energy at the U.S.
Department of Energy.

REFERENCES
Brambley, M.R., D. Hansen, P. Haves, D.R.

Holmberg, S.C. McDonald, K.W. Roth, and P.
Torcellini. 2005. Advanced Sensors and
Controls for Building Applications: Market
Assessment and Potential R&D Pathways,
PNNL-15149, prepared for the U.S. Department
of Energy by Pacific Northwest National
Laboratory.

Crawley, D.B, L.K. Lawrie, C.O. Pedersen, F.C.
Winkelmann, M.J. Witte, R.K. Strand, R.J.

Proceedings: Building Simulation 2007

- 1352 -

Liesen, W.F. Buhl, Y.J. Huang, R.H. Henninger,
J. Glazer, D.E. Fisher, D.B. Shirey III, B.T.
Griffith, P.G. Ellis, and L. Gu. 2004.
“EnergyPlus: An Update,” Proceedings of the
SimBuild 2004 Conference, August 4-6, 2004,
Boulder, CO.

UIUC, LBNL. 2007a. EnergyPlus Input Output
Reference, U.S. Department of Energy.

UIUC, LBNL. 2007b. EnergyPlus Engineering
Reference, U.S. Department of Energy.

SET POINT MANAGER:SCHEDULED
SET POINT MANAGER:SCHEDULED:DUALSETPOINT
SET POINT MANAGER:OUTSIDE AIR
SET POINT MANAGER:SINGLE ZONE REHEAT
SET POINT MANAGER:SINGLE ZONE HEATING
SET POINT MANAGER:SINGLE ZONE COOLING
SET POINT MANAGER:SINGLE ZONE MIN HUM
SET POINT MANAGER:SINGLE ZONE MAX HUM
SET POINT MANAGER:MIXED AIR
SET POINT MANAGER:OUTSIDE AIR PRETREAT
SET POINT MANAGER:WARMEST
SET POINT MANAGER:COLDEST
SET POINT MANAGER:RETURN AIR BYPASS FLOW

SYSTEM AVAILABILITY MANAGER:SCHEDULED
SYSTEM AVAILABILITY MANAGER:NIGHT CYCLE
SYSTEM AVAILABILITY MANAGER:DIFFERENTIAL THERMOSTAT
SYSTEM AVAILABILITY MANAGER:HIGH TEMPERATURE TURN OFF
SYSTEM AVAILABILITY MANAGER:HIGH TEMPERATURE TURN ON
SYSTEM AVAILABILITY MANAGER:LOW TEMPERATURE TURN OFF
SYSTEM AVAILABILITY MANAGER:LOW TEMPERATURE TURN ON
SYSTEM AVAILABILITY MANAGER:NIGHT VENTILATION

UNCONTROLLED LOOP OPERATION
COOLING LOAD RANGE BASED OPERATION
HEATING LOAD RANGE BASED OPERATION
OUTDOOR DRYBULB RANGE BASED OPERATION
OUTDOOR WETBULB RANGE BASED OPERATION
OUTDOOR DEWPOINT RANGE BASED OPERATION
OUTDOOR RHPERCENT RANGE BASED OPERATION
OUTDOOR DRYBULB TEMPERATURE DIFFERENCE BASED OPERATION
OUTDOOR WETBULB TEMPERATURE DIFFERENCE BASED OPERATION
OUTDOOR DEWPOINT TEMPERATURE DIFFERENCE BASED OPERATION
COMPONENT SETPOINT BASED OPERATION

ELECTRIC LOAD CENTER:DISTRIBUTION

DEMAND MANAGER:EXTERIOR LIGHTS
DEMAND MANAGER:LIGHTS
DEMAND MANAGER:ELECTRIC EQUIPMENT
DEMAND MANAGER:THERMOSTATS

Figure 2 High-level EnergyPlus control objects

ENERGY MANAGEMENT SYSTEM:SENSOR
ENERGY MANAGEMENT SYSTEM:ACTUATOR

ENERGY MANAGEMENT SYSTEM:PROGRAM
ENERGY MANAGEMENT SYSTEM:PROGRAM LIST
ENERGY MANAGEMENT SYSTEM:SUBROUTINE
ENERGY MANAGEMENT SYSTEM:GLOBAL VARIABLE
ENERGY MANAGEMENT SYSTEM:REPORT VARIABLE

Figure 3 Energy Management System objects

Instruction Syntax Instruction Description
SET <var> = <expr> Sets the value of a variable. If <var> has not been used

before, it is dynamically declared.
IF <expr> Conditional decision. If <expr> evaluates to anything

other than zero, the block of instructions after the IF are
executed.

ELSEIF <expr> Conditional decision that follows a regular IF block of
instructions. If <expr> evaluates to anything other than
zero, the block of instructions after the ELSEIF are
executed.

ELSE Conditional decision. Associated with an IF instruction,
the block of instructions after the ELSE are executed if
<expr> evaluates to zero for all preceding IF or
ELSEIF instructions.

ENDIF Marks the end of an IF-ELSE block of instructions.
CALL <subr> Initiates a subroutine. Returns to the calling point when

completed. Recursive calling is allowed.
RUN <prog> Initiates a program. No return is expected.
EXIT Prematurely exits a subroutine or program causing

control to return to the caller.

Proceedings: Building Simulation 2007

- 1353 -

Figure 4 EnergyPlus Runtime Language instruction syntax
ENERGY MANAGEMENT SYSTEM:PROGRAM,

 MainProgram, !- Name

 IF Ttank > 60, ! High temperature shut-off

 SET Pump = Off,

 EXIT,

 ENDIF,

 IF Tout < 0, ! Freeze protection control

 SET Pump = On,

 EXIT,

 ENDIF,

 SET deltaT = Tcollector - Ttank, ! Differential thermostat

 IF deltaT > 10,

 SET Pump = On,

 ELSEIF deltaT < 2,

 SET Pump = Off,

 ENDIF;

Figure 5 Example of EnergyPlus Runtime Language code embedded in an object

